Documentation

WritableStreamInterface extends EventEmitterInterface

The `WritableStreamInterface` is responsible for providing an interface for write-only streams and the writable side of duplex streams.

Besides defining a few methods, this interface also implements the EventEmitterInterface which allows you to react to certain events:

drain event: The drain event will be emitted whenever the write buffer became full previously and is now ready to accept more data.

```php
$stream->on('drain', function () use ($stream) {
    echo 'Stream is now ready to accept more data';
});
```

This event SHOULD be emitted once every time the buffer became full
previously and is now ready to accept more data.
In other words, this event MAY be emitted any number of times, which may
be zero times if the buffer never became full in the first place.
This event SHOULD NOT be emitted if the buffer has not become full
previously.

This event is mostly used internally, see also `write()` for more details.

pipe event: The pipe event will be emitted whenever a readable stream is pipe()d into this stream. The event receives a single ReadableStreamInterface argument for the source stream.

```php
$stream->on('pipe', function (ReadableStreamInterface $source) use ($stream) {
    echo 'Now receiving piped data';

    // explicitly close target if source emits an error
    $source->on('error', function () use ($stream) {
        $stream->close();
    });
});

$source->pipe($stream);
```

This event MUST be emitted once for each readable stream that is
successfully piped into this destination stream.
In other words, this event MAY be emitted any number of times, which may
be zero times if no stream is ever piped into this stream.
This event MUST NOT be emitted if either the source is not readable
(closed already) or this destination is not writable (closed already).

This event is mostly used internally, see also `pipe()` for more details.

error event: The error event will be emitted once a fatal error occurs, usually while trying to write to this stream. The event receives a single Exception argument for the error instance.

```php
$stream->on('error', function (Exception $e) {
    echo 'Error: ' . $e->getMessage() . PHP_EOL;
});
```

This event SHOULD be emitted once the stream detects a fatal error, such
as a fatal transmission error.
It SHOULD NOT be emitted after a previous `error` or `close` event.
It MUST NOT be emitted if this is not a fatal error condition, such as
a temporary network issue that did not cause any data to be lost.

After the stream errors, it MUST close the stream and SHOULD thus be
followed by a `close` event and then switch to non-writable mode, see
also `close()` and `isWritable()`.

Many common streams (such as a TCP/IP connection or a file-based stream)
only deal with data transmission and may choose
to only emit this for a fatal transmission error once and will then
close (terminate) the stream in response.

If this stream is a `DuplexStreamInterface`, you should also notice
how the readable side of the stream also implements an `error` event.
In other words, an error may occur while either reading or writing the
stream which should result in the same error processing.

close event: The close event will be emitted once the stream closes (terminates).

```php
$stream->on('close', function () {
    echo 'CLOSED';
});
```

This event SHOULD be emitted once or never at all, depending on whether
the stream ever terminates.
It SHOULD NOT be emitted after a previous `close` event.

After the stream is closed, it MUST switch to non-writable mode,
see also `isWritable()`.

This event SHOULD be emitted whenever the stream closes, irrespective of
whether this happens implicitly due to an unrecoverable error or
explicitly when either side closes the stream.

Many common streams (such as a TCP/IP connection or a file-based stream)
will likely choose to emit this event after flushing the buffer from
the `end()` method, after receiving a *successful* `end` event or after
a fatal transmission `error` event.

If this stream is a `DuplexStreamInterface`, you should also notice
how the readable side of the stream also implements a `close` event.
In other words, after receiving this event, the stream MUST switch into
non-writable AND non-readable mode, see also `isReadable()`.
Note that this event should not be confused with the `end` event.

The event callback functions MUST be a valid callable that obeys strict parameter definitions and MUST accept event parameters exactly as documented. The event callback functions MUST NOT throw an Exception. The return value of the event callback functions will be ignored and has no effect, so for performance reasons you're recommended to not return any excessive data structures.

Every implementation of this interface MUST follow these event semantics in order to be considered a well-behaving stream.

Note that higher-level implementations of this interface may choose to define additional events with dedicated semantics not defined as part of this low-level stream specification. Conformance with these event semantics is out of scope for this interface, so you may also have to refer to the documentation of such a higher-level implementation.

Tags
see
EventEmitterInterface
see
DuplexStreamInterface

Table of Contents

Methods

close()  : void
Closes the stream (forcefully).
emit()  : mixed
end()  : void
Successfully ends the stream (after optionally sending some final data).
isWritable()  : bool
Checks whether this stream is in a writable state (not closed already).
listeners()  : mixed
on()  : mixed
once()  : mixed
removeAllListeners()  : mixed
removeListener()  : mixed
write()  : bool
Write some data into the stream.

Methods

close()

Closes the stream (forcefully).

public close() : void

This method can be used to forcefully close the stream, i.e. close the stream without waiting for any buffered data to be flushed. If there's still data in the buffer, this data SHOULD be discarded.

$stream->close();

Once the stream is closed, it SHOULD emit a close event. Note that this event SHOULD NOT be emitted more than once, in particular if this method is called multiple times.

After calling this method, the stream MUST switch into a non-writable mode, see also isWritable(). This means that no further writes are possible, so any additional write() or end() calls have no effect.

$stream->close();
assert($stream->isWritable() === false);

$stream->write('nope'); // NO-OP
$stream->end(); // NO-OP

Note that this method should not be confused with the end() method. Unlike the end() method, this method does not take care of any existing buffers and simply discards any buffer contents. Likewise, this method may also be called after calling end() on a stream in order to stop waiting for the stream to flush its final data.

$stream->end();
Loop::addTimer(1.0, function () use ($stream) {
    $stream->close();
});

If this stream is a DuplexStreamInterface, you should also notice how the readable side of the stream also implements a close() method. In other words, after calling this method, the stream MUST switch into non-writable AND non-readable mode, see also isReadable().

Tags
see
ReadableStreamInterface::close()

emit()

public emit(mixed $event[, array<string|int, mixed> $arguments = [] ]) : mixed
Parameters
$event : mixed
$arguments : array<string|int, mixed> = []

end()

Successfully ends the stream (after optionally sending some final data).

public end([mixed|string|null $data = null ]) : void

This method can be used to successfully end the stream, i.e. close the stream after sending out all data that is currently buffered.

$stream->write('hello');
$stream->write('world');
$stream->end();

If there's no data currently buffered and nothing to be flushed, then this method MAY close() the stream immediately.

If there's still data in the buffer that needs to be flushed first, then this method SHOULD try to write out this data and only then close() the stream. Once the stream is closed, it SHOULD emit a close event.

Note that this interface gives you no control over explicitly flushing the buffered data, as finding the appropriate time for this is beyond the scope of this interface and left up to the implementation of this interface.

Many common streams (such as a TCP/IP connection or file-based stream) may choose to buffer all given data and schedule a future flush by using an underlying EventLoop to check when the resource is actually writable.

You can optionally pass some final data that is written to the stream before ending the stream. If a non-null value is given as $data, then this method will behave just like calling write($data) before ending with no data.

// shorter version
$stream->end('bye');

// same as longer version
$stream->write('bye');
$stream->end();

After calling this method, the stream MUST switch into a non-writable mode, see also isWritable(). This means that no further writes are possible, so any additional write() or end() calls have no effect.

$stream->end();
assert($stream->isWritable() === false);

$stream->write('nope'); // NO-OP
$stream->end(); // NO-OP

If this stream is a DuplexStreamInterface, calling this method SHOULD also end its readable side, unless the stream supports half-open mode. In other words, after calling this method, these streams SHOULD switch into non-writable AND non-readable mode, see also isReadable(). This implies that in this case, the stream SHOULD NOT emit any data or end events anymore. Streams MAY choose to use the pause() method logic for this, but special care may have to be taken to ensure a following call to the resume() method SHOULD NOT continue emitting readable events.

Note that this method should not be confused with the close() method.

Parameters
$data : mixed|string|null = null

isWritable()

Checks whether this stream is in a writable state (not closed already).

public isWritable() : bool

This method can be used to check if the stream still accepts writing any data or if it is ended or closed already. Writing any data to a non-writable stream is a NO-OP:

assert($stream->isWritable() === false);

$stream->write('end'); // NO-OP
$stream->end('end'); // NO-OP

A successfully opened stream always MUST start in writable mode.

Once the stream ends or closes, it MUST switch to non-writable mode. This can happen any time, explicitly through end() or close() or implicitly due to a remote close or an unrecoverable transmission error. Once a stream has switched to non-writable mode, it MUST NOT transition back to writable mode.

If this stream is a DuplexStreamInterface, you should also notice how the readable side of the stream also implements an isReadable() method. Unless this is a half-open duplex stream, they SHOULD usually have the same return value.

Return values
bool

listeners()

public listeners([mixed $event = null ]) : mixed
Parameters
$event : mixed = null

on()

public on(mixed $event, callable $listener) : mixed
Parameters
$event : mixed
$listener : callable

once()

public once(mixed $event, callable $listener) : mixed
Parameters
$event : mixed
$listener : callable

removeAllListeners()

public removeAllListeners([mixed $event = null ]) : mixed
Parameters
$event : mixed = null

removeListener()

public removeListener(mixed $event, callable $listener) : mixed
Parameters
$event : mixed
$listener : callable

write()

Write some data into the stream.

public write(mixed|string $data) : bool

A successful write MUST be confirmed with a boolean true, which means that either the data was written (flushed) immediately or is buffered and scheduled for a future write. Note that this interface gives you no control over explicitly flushing the buffered data, as finding the appropriate time for this is beyond the scope of this interface and left up to the implementation of this interface.

Many common streams (such as a TCP/IP connection or file-based stream) may choose to buffer all given data and schedule a future flush by using an underlying EventLoop to check when the resource is actually writable.

If a stream cannot handle writing (or flushing) the data, it SHOULD emit an error event and MAY close() the stream if it can not recover from this error.

If the internal buffer is full after adding $data, then write() SHOULD return false, indicating that the caller should stop sending data until the buffer drains. The stream SHOULD send a drain event once the buffer is ready to accept more data.

Similarly, if the stream is not writable (already in a closed state) it MUST NOT process the given $data and SHOULD return false, indicating that the caller should stop sending data.

The given $data argument MAY be of mixed type, but it's usually recommended it SHOULD be a string value or MAY use a type that allows representation as a string for maximum compatibility.

Many common streams (such as a TCP/IP connection or a file-based stream) will only accept the raw (binary) payload data that is transferred over the wire as chunks of string values.

Due to the stream-based nature of this, the sender may send any number of chunks with varying sizes. There are no guarantees that these chunks will be received with the exact same framing the sender intended to send. In other words, many lower-level protocols (such as TCP/IP) transfer the data in chunks that may be anywhere between single-byte values to several dozens of kilobytes. You may want to apply a higher-level protocol to these low-level data chunks in order to achieve proper message framing.

Parameters
$data : mixed|string
Return values
bool

        
On this page

Search results